برنامه‌ریزی تولید و زمان‌بندی عملیات: یک روشکرد جدید

نویسنده‌گان: دکتر سید کمال چهارسوزی
دکتر مهدی صادقی پاککار

چکیده
این مقاله به معرفی چارچوب کلی و برخی ضیمه‌های مهم یک سیستم جدید برای برنامه‌ریزی جریان مواد و زمان‌بندی عملیات با توجه به محدودیت‌های فریبفت و پردازد. نتیجه توصیه روشکردن MRP جدید، نارمال‌های موجود در سیستم برنامه‌ریزی جریان مواد به‌دست خود می‌آید فرضیات های غیرواقعی آن می‌باشد.

این سیستم با یکدیگر از یک مکانیزم برنامه‌ریزی خودکار (الگوریتم ابتدایی - ایکاری) زمان‌های تدریجی ساخت را با ملاحظه و رابطه بین الگوی بارگذاری و فریبفت‌های محدودشان برای ارائه مشخصی از تولید در هر زمان خاص محاسبه می‌کند و بدین ترتیب بر عمل‌های محدودیت‌های پارادیم زمینه فرضیات مواردی تکرار ساخت و فریبفت‌های تابع‌های تابع محدود غلبه می‌کند. انجام الگوریتم مختلف آزمایش‌هایی حاکی از بهبود قابل ملاحظه‌ای معیارهای سنگین عملکرد برای سیستم جدید برنامه‌ریزی در مقایسه با MRP سیستم برنامه‌ریزی

1- مقدمه

ظهور پویا‌های تجارت و تکنولوژی در جهان معاصر، تأثیر قابل ملاحظه‌ای بر روی استراتژی‌های شرکت‌های تولیدی به‌خوبی گذارده است. توسعه سیستم‌های کامپیوتری مدیریت تولید به‌ویژه MRPII از بارزترین ویژگی‌های این

- عضو هیأت علمی دانشگاه تربیت مدرس، پیش صنایع 2

- عضو هیأت علمی دانشگاه آزاد اسلامی

43
رضایت بخش این سیستم‌ها به ویژه در محيط‌های پیچیده تولیدی مورد تردید است [۲]. این ادعا از طریق گزارش‌های تحقیقی مختلف که ۵۰ تا ۷۰ درصد از سیستم‌های MRP ۱ در رده‌های ناموفق قرار می‌دهند، تأیید می‌شود [۳].

عموماً، یکی از علل اساسی این عدم کارایی و عملکرد ضعیف، انجام محاکمات احتیاجات مورد بر مبنای زمان‌های ثابت تدارک ساخت ۳ می‌باشد. زمان‌های ثابت تدارک ساخت در شرایطی که به سبب تبدیل نهایی MPS برای بارگیری ماشین‌آلات ناشی‌پذیر می‌باشد، به خوبی عمل می‌کند. ولی در شرایطی که دارای نوسانات مداوم باشد، انتگرال طراحی برنامه ارسال سفارش‌ها بر مبنای یک مدل عملی برای ظرفیت امری اجتایضناپذیر خواهد بود (برای مثال به [۴] مراجعه کنید).

این تحقیق با توسط یک سیستم جدید برنامه‌ریزی، زمان‌های تدارک ساخت قطعات را با ملاحظه رابطه همزمان بین الگوی بارگیرانی و ظرفیت تغییر می‌کند و به صورت تحلیل نتایج بدست آمده طراحی شده است. ابزارهای مورد استفاده برای توسعت مدل‌بندی، زبان برنامه‌نویسی Code-Base و پست‌ت نرم‌افزاری C با پشتیبانی کد E می‌باشد که امکانات قابل ملاحظه‌ای برای انجام عملیات روش C/C++ فاکس الاطلاعاتی در محیط برنامه‌نویسی ایجاد می‌کند.

- زمان تدارک ساخت ترجیم اصطلاح Lead time بوده و شامل زمان آماده‌سازی، زمان پردازش و زمان صف برای ساخت هر یک از قطعات تولیدی می‌باشد.
برنامه‌ریزی پس‌رو با قید ظرفیت

هدف اصلی در این مرحله، توسعه یک الگوریتم استک‌اری برای محاسبه‌ی زمان‌های برنامه‌ریزی شده تدارک‌ساخت با ملاحظه‌ی رابطه

برنامه تفصیلی تولید (MPS)

دوره	۱	۲	۳	۴	۵	۶	۷	...
کالای نهایی ۱								
کالای نهایی ۲								

برنامه پس‌رو بدون قید ظرفیت

ارزیابی برنامه تولید

صلاحیت برنامه

معیارها و فواید تصمیم‌گیری

MPS

تغییر

برنامه تولید قابل پذیرش

شکل ۱- برنامه‌ریزی با قید ظرفیت مبتنی بر زمان‌های متغیر تدارک ساخت

۴۵
ظرفیت موجود و طراحی برنامه پسر و با قید
ظرفیت، فلسفه محترم شده در سیستم برنامه‌ریزی
تولید (OPT) فراهم می‌کند. این تکنیک بی‌در نظر
گرفتن خط مشی میزان سفارش / ساخت و استفاده
از زمان‌های تداوم عملیات شامل زمان‌های
پردازش و آماده‌سازی، به برنامه‌ریزی عملیات
ساخت برای کلیه قطعات تشکیل دهنده‌های بیک از
سفرش‌های نهایی در MPS بسیار بوده و بدون قید
ظرفیت ذخیره می‌شود. روش محاسبات مستلزم اجرای
پیمان‌پذیری پس رفتن در خرید از آن‌ها عملیات تولیدی برای
تکمیل سفارش‌های نهایی تا اوایل عملیات وابسته
قابل بین آن می‌باشد.

فرمول عمومی محاسبه برنامه عملیات ساخت
برای هر پارت تولیدی به قرار زیر است:

s[i].st = s[i].dd - s[i].qnty \times s[i].run - s[i].setup

در رابطه با لایه‌بندی:

زمان شروع برنامه عملیات Qم = s[i].st

زمان تکمیل برنامه عملیات Qم = s[i].dd

تعداد اقلام مورد نیاز ساخت برای

برنامه عملیات قم = s[i].run

زمان پردازش برنامه عملیات Qم = s[i].setup

زمان آماده‌سازی برنامه عملیات Qم = s[i].setup

برای پارامترهای مختلف اقلام مورد نیاز
بزرگتر از میزان ساخت / سفارش باشند، آنها باید
از یک پارت تولیدی مورد نیاز خواهند بود. در این
شرحیت، برای سایر پارامترهای تولیدی زمان
آماده‌سازی در نظر گرفته شده‌اند، از

ماندگان برنامه‌ریزی با قید ظرفیت، بارگذاری
حافل از برنامه پسر و بدون قید ظرفیت را مورد
ارزیابی قرار می‌دهد. با استفاده از تعدادی قواعد
ایستگاهی مشابه با تراکم بارگذاری را
مشخص می‌کند. سپس این عملیات را به زمان‌های
زودتری تخصصی می‌دهد تا ظرفیت مطلوب
حافل شود.

هر یک از این نوع‌های یک از محدودیت‌های
دیدگاه با هنگام و ریزابه می‌رساند. با این
وجود، بیشتر یک از قواعد با وارد کردن یک
ضریب ثابت (Wj) در سیستم، کنترل می‌شود.

هنگامی که زمان جدیدی برای انجام عملیات
تخصصی قدر می‌شود، تکنیک مشابهی نیز برای
عملیات قبل و ابتدایی بین آن‌ها قرنطین
که به‌صورت یک مدار بسته در شکل (آ) آمده
است) آن‌قدر تکرار می‌شود، تا در نهایت یک
برنامه مطلوب و قابل پذیرش می‌گردد به همراه
بست‌آمده‌های آن. بنابراین‌های مکانیزم
مستلزم بارگذاری عملیات قبل از مبدأ شروع
برنامه‌ریزی در MPS آن‌ها گاهی پردازش
سفارش‌ها به اندازه‌ها گسترده‌تر می‌شوند و
از مبدأ شروع برنامه‌ریزی در MPS به چلو انتقال
یافته و در نتیجه موجب تحکیل برخی از سفارش‌ها
به تأخیر می‌افتد. در بعضی های بعد، در
قسمت‌های مختلف این سیستم جدید برنامه‌ریزی
را شروع می‌دهد.

1.1- برنامه پسر و بدون قید ظرفیت
توسعه الگوریتم برنامه‌ریزی پسر و بدون قید
ظرفیت، مبنایی برای سنجش شدت بارگذاری روي
آنجا که برنامه‌بری پسر را برای برخی عملیات ممکن است به تاخیر از مبدا شروع برنامه‌بریزی (زنمان صفر) می‌تواند شود. تمام عملیات ساخت به اندامی جداسازی فاصله زمانی تخصیص شده به سمت جلو انتقال می‌یابد:

```plaintext
if (Min[s[i].st] < 0)
    shift = -Min[s[i].st]

s[i].st = s[i].st + Shift
ds[i].dd = s[i].dd + Shift
```

همچنین رابطه تقدیم و تأخیر عملیات در فاصله دیگری به نام الگوی تقدیم و تأخیر عملیات ذخیره می‌شود. این الگوی اطلاعاتی درباره مسیر بحرانی هم پارتی های تولیدی و فرآیند آورده و برای حفظ محصولات حاصل از توالی منطقی عملیات به‌وسیله سایر ماده‌ها مورد استفاده قرار می‌گیرد. به‌طور اجمالی، مدول دیگری برای اطمینان از قابلیت استفاده برنامه‌های مسیری که می‌گیرد. به‌طوری که مدل برنامه‌های برای استفاده در این پمنت به معنی اصول و قواعد به کار رفت‌های در الگوی اتکاری برای تکنیک برنامه‌بریزی با هدف فرعیت برنامه‌بریزی با کنترل تکنیک برنامه‌بریزی که با یکدیگر تلاقی دارند.

1. تیمین عملیاتی که با یکدیگر تلاقی دارند.

```plaintext
Find {clash[m]} ... 

برنامه عملیاتی [I][j][k] در صورتی با یکدیگر تلاقی دارند که یکی از شرایط زیر برقرار باشد:

st = s[i].st
dd = s[i].dd

clash[m] = { s[j].dd > st, s[j].dd <= dd, or }
```
به‌طوری‌که عملیات نهایی = براساس روابط بالا، هزینه‌های نگهداری موجودی به زمان تداوم مواد اولیه بستگی دارند.
شاخصهاشکنی شده برای تداوم مواد از زمان شروع تولید تا کسب درآمد برای کالای نهایی در
سیستم راک‌دی می‌باشد. برای آن‌هاً، عملیات تولیدی
(تکمیل کالای نهایی) متحمل هزینه‌فرصت از
دست رفته حاصل از عدم تحول به موادی
سفارش‌ها می‌شوند.
8. محاسبه‌فصل زمانی بین اولین عملیات پردازش
برای هر یک از اعضای گروه‌بندی زمان مبداً برای
شروع برنامه‌ریزی.

Find {dist[i]} i = 1, 2, 3, ..., n

9. یافتن حداکثر فاصله زمانی به‌دست آمده برای هر عضو گروه.

Find {Min {dist[1]}, Min{dist[2]}, ...,}

10. انتخاب برترین عضو گروه.

این انتخاب مستلزم تأمین هزینه‌های قواعد و
میزان‌هایی که هر گروه‌های انتخاب شده تعداد عمليات
وایستگی‌بلی، زمان تراکمی پردازش، هزینه موجودی در جریان صادق (با هدف‌های
عینیت‌سازی) و فاصله‌ای برای زمان‌بندی اولیه
عملیات وایستگی‌بلی (با هدف‌های خاصیت‌سازی)
می‌شود. فرآیند انتخاب با استفاده از روش
کنید. در طی چند گام به ترتیب انجام می‌شود:

\[
\text{wip}[i] = \begin{cases}
\text{داده‌ای ساخت} - \text{داده‌ای ممکنی} \times \text{کست} & \text{اگر داده‌ای ساخت} > \text{داده‌ای ممکنی} \\
0 & \text{اگر داده‌ای ساخت} \leq \text{داده‌ای ممکنی}
\end{cases}
\]

\[
\text{گام ۱ - محاسبه‌ماتریس} \text{به‌کل مقدار} \text{مقیاس} (R) \text{با این روش، مقدار یک مختلف قواعد تصمیم}
\]

\[
\text{clash}[m] = \begin{cases}
\text{داده‌ای ساخت} \geq \text{داده‌ای ممکنی} & i = 1, 2, 3, ..., \\
\text{داده‌ای ساخت} < \text{داده‌ای ممکنی} & j = 1, 2, 3, ..., \\
\text{مقدار} & i \neq j
\end{cases}
\]

\[
\text{پیکریگر تلاقی‌های دارند.}
\]

\[
\text{Max} \{\text{clash}[1], \text{clash}[2], ..., \}
\]

\[
\text{یافتن تعداد عملیات وابسته قبلی برای هر یک}
\]

\[
\text{از اعضای گروه با شمارش عضو تلاقی.}
\]

\[
\text{Find} \{\text{opcount[i]}\} i = 1, 2, 3, ..., \]

\[
\text{یافتن حداکثر تعداد عملیات وابسته قبلی برای هر یک از اعضای گروه با شمارش عضو تلاقی.}
\]

\[
\text{Find} \{\text{Max\{opcount[1]\}, Max\{opcount[2]\},} \}
\]

\[
\text{یافتن حداکثر زمان تراکمی پردازش برای هر}
\]

\[
\text{عضو و عملیات وابسته قبلی به آن.}
\]

\[
\text{Find} \{\text{optime[i]}\} i = 1, 2, 3, ..., \]

\[
\text{یافتن حداکثر زمان تراکمی پردازش برای هر}
\]

\[
\text{عضو و عملیات وابسته قبلی به آن.}
\]

\[
\text{Find} \{\text{Max\{optime[1]\}, Max\{optime[2]\},} \}
\]

\[
\text{یافتن هزینه موجودی در جریان ساخت برای هر}
\]

\[
\text{یک از اعضای گروه.}
\]

\[
\text{Find} \{\text{wip[1]}, \text{wip[2]}, ..., \}
\]

\[
\text{برای محاسبه هزینه‌های موجودی در جریان}
\]

\[
\text{ساخت داریم:}
\]

\[
\text{گام ۱ - محاسبه‌ماتریس} \text{به‌کل مقدار} \text{مقیاس} (R) \text{با این روش، مقدار یک مختلف قواعد تصمیم}
\]

\[
\text{clash}[m] = \begin{cases}
\text{داده‌ای ساخت} \geq \text{داده‌ای ممکنی} & i = 1, 2, 3, ..., \\
\text{داده‌ای ساخت} < \text{داده‌ای ممکنی} & j = 1, 2, 3, ..., \\
\text{مقدار} & i \neq j
\end{cases}
\]

\[
\text{پیکریگر تلاقی‌های دارند.}
\]

\[
\text{Max} \{\text{clash}[1], \text{clash}[2], ..., \}
\]

\[
\text{یافتن تعداد عملیات وابسته قبلی برای هر یک}
\]

\[
\text{از اعضای گروه با شمارش عضو تلاقی.}
\]

\[
\text{Find} \{\text{opcount[i]}\} i = 1, 2, 3, ..., \]

\[
\text{یافتن حداکثر تعداد عملیات وابسته قبلی برای هر یک از اعضای گروه با شمارش عضو تلاقی.}
\]

\[
\text{Find} \{\text{Max\{opcount[1]\}, Max\{opcount[2]\},} \}
\]

\[
\text{یافتن حداکثر زمان تراکمی پردازش برای هر}
\]

\[
\text{عضو و عملیات وابسته قبلی به آن.}
\]

\[
\text{Find} \{\text{optime[i]}\} i = 1, 2, 3, ..., \]

\[
\text{یافتن حداکثر زمان تراکمی پردازش برای هر}
\]

\[
\text{عضو و عملیات وابسته قبلی به آن.}
\]

\[
\text{Find} \{\text{Max\{optime[1]\}, Max\{optime[2]\},} \}
\]

\[
\text{یافتن هزینه موجودی در جریان ساخت برای هر یک از اعضای گروه.}
\]

\[
\text{Find} \{\text{wip[1]}, \text{wip[2]}, ..., \}
\]

\[
\text{برای محاسبه هزینه‌های موجودی در جریان}
\]

\[
\text{ساخت داریم:}
\]

\[
\text{گام ۱ - محاسبه‌ماتریس} \text{به‌کل مقدار} \text{مقیاس} (R) \text{با این روش، مقدار یک مختلف قواعد تصمیم}
\]
هر یک از عناصر ماتریس محاسبه می‌شود به طوری که:

\[C[i,j] = \sum_{j=1}^{4} W[i,j] \]
\[\sum_{j=1}^{4} W[i,j] = 1 \]

(جهت محاسبه ماتریس قواعد موافق (D))

عناصر این ماتریس عدم اهمیت هر یک از عملیات را نسبت به یکدیگر نشان می‌دهد. می‌تواند مورد استفاده در عملیات و زندگی قواعد ترتیب از این ماتریس حذف گردد. در این رابطه:

\[r[i,j] = \frac{x[i,j]}{\sqrt{\sum_{i,j} x[i,j]^2}} \]

(گام ۵ – محاسبه ماتریس وزنی تبدیل مقیاس (E))

این ماتریس از حاصل ضرب هر یک از عناصر ستون ماتریس R در عنصر ماتریس وزنی متقابل با آن به دست می‌آید:

\[V = R W \]

(گام ۶ – محاسبه مجموعه قواعد موافق و ناموفاق (F))

مجموعه قواعد موافق شامل کلیه قواعدی است که برتری یکی از عملیات را نسبت به یکدیگر نشان می‌دهد. مجموعه مکمل مجموعه قواعد موافق است:

\[C[i,j] = \begin{cases} 1 & x[i,j] \geq x[i,j] \ \\ 0 & x[i,j] < x[i,j] \end{cases} \]

(گام ۷ – محاسبه ماتریس روجان بر مبنای قواعد موافق (G))

عناصر این ماتریس حریق از عملیات را نسبت به یکدیگر نشان می‌دهد. برای محاسبه حریق از عناصر ماتریس روجان می‌توان از روابط زیر استفاده می‌شود:

\[f[i,j] = \begin{cases} 1 & C \ \\ 0 & < C \end{cases} \]

به طوری که:

\[\bar{C} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} c[i,j]}{m(m-1)} \]

(گام ۸ – محاسبه ماتریس قواعد موافق (H))

عناصر این ماتریس اهمیت نسبی هر یک از عملیات را نسبت به یکدیگر نشان می‌دهد. می‌تواند مورد استفاده در این ماتریس حاصل جمع وزن‌های قواعد ترتیب در مجموعه قواعد موافق مورد استفاده قرار گیرد.
گام ۷. محاسبه ماتریس رجحان بر مبنای قواعد نامناسب (G).

عناصر این ماتریس برتری هر یک از عملیات را نسبت به عملیات دیگر نشان می‌دهد. برای محاسبه هر یک از عناصر ماتریس رجحان نامناسب از روابط زیر استفاده می‌شود:

\[g[i,j] = \begin{cases} 1, & d[i,j] \geq d[j,i] \\ 0, & d[i,j] < d[j,i] \end{cases} \]

به طوری که \(E \).

گام ۸. محاسبه ماتریس رجحان ادغامی (E).

عناصر این ماتریس با در نظر گرفتن رابطه توأم بین عناصر ماتریس رجحان موافق (F) و عناصر ماتریس رجحان نامناسب (G) برتری هر یک از عملیات را نسبت به یکدیگر نشان می‌دهد. برای محاسبه هر یک از عناصر ماتریس رجحان ادغامی از رابطه زیر استفاده می‌شود:

\[e[i,j] = f[i,j] \times g[i,j] \]

گام ۹. انتخاب برترین عملیات

شرط انتخاب برترین عملیات [i] از بین سایر عملیات تلاقی به قرار زیر است:

\[e[i,j] = \begin{cases} 1, & i,j \in 1,2 \ldots m \\ 0, & i,j \notin 1,2 \ldots m \end{cases} \]

و برای حداکثر یک یک:

\[e[i,j] = 1 \]

\[k = \frac{1}{2} \quad m, \quad i,j < k \quad k+1 \]

و برای تمام [i] ها:

\[r[k,i] = 0 \]
برنامه‌ریزی تولید و زمان‌بندی عملیات: یک روشکد جديد

خود را به سرعت زیر فراهم می‌آورند:

3- برنامه‌ریزی پیش‌رو

این مادول که مبتنی بر الگوریتم برنامه‌ریزی
پیشرو با قید طرفیت می‌باشد، با مبدأ قراردادن
زمان‌بندی مبتنی بر زمان‌بندی ساخت قطعات از
یک‌پارچه‌سازی منطقه BOM است. هدف از
طراحی این برنامه درآوردن آماده‌سازی مسیر
زمان‌بندی برای مرحله بعدی می‌باشد، که در
محاسبات زمان‌بندی ثابت تدریک ساخت توسط
برنامه تولید MRP مورد استفاده قرار می‌گیرد.

شما می‌توانید با روتو برنامه‌ریزی پیش‌رو
سفارش‌های رسیده بر اساس توالی عملیات برای
پردازش روی مارک آماده‌سازی کنید. نتایج
در بالا نشان داده که از
مراجع مشترکی استفاده می‌کنیدی که مربوط به
زودترین زمان‌بندی تحویل (DueDate) اولویت گذاری می‌شود. داده‌های مربوط به
زمان‌بندی تحویل قطعات نیز از طریق فایل
اطلاعاتی برنامه پس‌رو بودن قید طرفیت قابل
استخراج است. بنابراین تایپ برنامه‌ریزی پس‌رو
بی‌قید طرفیت به عنوان ایجاده از دو ابزار برای
طرح برنامه پیش‌رو مورد استفاده قرار می‌گیرد. باین‌ها و باراگری سفارش‌ها عموماً به تأیید
دو عامل محدود‌کننده قرار دارد:

1- امکان دسترسی به متابع و أولین فاصله قابل
دسترس برای متابع مورد نیاز.
2- زمان ختم عملیات کلی.

2- زمان انتظار در صف

این مادول تایبید برنامه‌ریزی پیش‌رو را مورد

باشیم، بنده گرفتن رابطه شرطی (If)، محاسبات
را انجام می‌دهیم.

12- انتقال عملیات وابسته قبل برای عضو انتخاب

شده.

Move {dependent [I]}

وابسته قبلی

این قاعده بر اساس روابط زیر انجام می‌شود:

s [I]. st = s[I]. st = req
S [I]. dd = s[I]. dd = req

با تکرار مداوم این الگوریتم تلاقی عملیات
بر طرف شده و در نهایت یک برنامه تولید
رضایت‌بخش بر اساس زمان‌بندی، این تدریک
ساخت حاصل خواهد شد.

MRP

این مرحله به دنبال تدوین برنامه عملیاتی تولید
بینی بر MRP می‌باشد. برنامه‌عملیاتی MRP
برای الگوریتم برنامه‌ریزی پس‌رو بدون قید طرفیت با
زمان‌بندی ثابت تدریک ساخت است. هدف از
توسعه برنامه عملیاتی MRP توسط برنامه آماده
ماقاها با برنامه تولید مرحله قبل است که بر پایه
زمان‌بندی متغیر تدریک ساخت، طراحی گردد. توسه برنامه عملیاتی تولید با زمان‌بندی ثابت
تدریک ساخت در طی سه مرحله انجام می‌شود:

- برنامه‌ریزی پیش‌رو
- برنامه‌‌ریزی انتظار در صف
- MRP

هر یک از مراحل بالا داده‌های مورد نیاز برای
طرحی یک برنامه تولید مبتلت بر زمان‌بندی ثابت

51
تجزیه و تحلیل قرار داده و زمان صرف برای هر یک از عمليات را محاسبه می‌کنید.

زمان‌هاي انتظار در صفحه‌های محاسبه‌ی مورد استفاده قرار گرفته است.

ب جدا کاشت زمان تداوک و تاکن تحويل به موقع سفارش‌ها را به مشترین و بیشتر فراهم کنید.

ب‌آموزند دقیقتری از بارگذاری و طرفیت مورد نیاز برای هر ترکیب تولید آنها می‌دهد.

ب‌توانه و مدیریت زمان‌های هزینه نیز با موعد تحويل، یک برنامه تولید قابل پذیرش در سطح کارگاه ارائه می‌کند. برخی از مشخصات اصلی که در طراحی مدیر مورد توجه قرار گرفته است عبارتند از:

۱. ساخت قطعات مستقل و در حجم‌های مختلف

۲. ساخت‌های درختی کالا با سطوح محدود

۳. عمليات مختلف در مسير ساخت قطعات

۴. وجود قطعات مشابه از اين رو، تابع به مدت اين می‌مکنی است با واقع‌های موجود در محیط‌های پیچیده تولید می‌گردد. حذف مفروضات زیر در تحقیقات آن به تواند مشگل‌هاي جدی‌ترین مسئله باشد.

۱. خيات ساخت / سفارش، خط مشی میزان سفارش / ساخت مستقل از تغییرات طرفیت در نظر گرفته شده است.

۲. اولویت‌یک، از مفروضات اصلی پکسیون بودن ارزش و اهميت هم‌هنا سفارش‌هاي رسیده است.
روش‌های دیگری مانند تنیبر MPS یا استراتژی جایگزینی استفاده کرده. ۳- مسیر‌های جایگزین، زمان‌های آماده‌سازی ثابت فرض شده و محدودیت‌های ایزاق تولید نیز نادیده گرفته می‌شود. این عوامل در انتخاب مسیرهای جایگزین، بسیار تعیین‌کننده هستند.

۴- زمان حمل ونقل مواد. این عامل از طریق طراحی استقرار تجهیزات روی استراتژی برنامه‌ریزی تولید تأثیر می‌گذارد.

۵- روش قراردادی بازار. در شرایط موجود فرض شده است که آخر وعده تحولی تعمیم شده در عملی نباشد، گل عامل‌های زمان‌های جلوتر انتقال یابد، با این وجود می‌توان از

پیوست ۱: فهرست اختصاصات

<table>
<thead>
<tr>
<th>BOM</th>
<th>Bill Of Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>JIT</td>
<td>Just In Time</td>
</tr>
<tr>
<td>MPS</td>
<td>Master Production Scheduling</td>
</tr>
<tr>
<td>MRPI</td>
<td>Materials Requirements Planning</td>
</tr>
<tr>
<td>MRPII</td>
<td>Manufacturing Resource Planning</td>
</tr>
<tr>
<td>OPT</td>
<td>Optimized Production Technology</td>
</tr>
<tr>
<td>RCCP</td>
<td>Rough – Cut Capacity Planning</td>
</tr>
</tbody>
</table>

