انتخاب و ارزیابی عملکرد مجموعه‌های اوراق بهادار سرمایه‌گذاری چند

می‌تواند: دکتر علی اصغر انواری گستری

چکیده مقاله

این مقاله ایتانا شیوه‌های کلاسیک انتخاب و ارزیابی عملکرد مجموعه‌ای اوراق بهادار سرمایه‌گذاری را که در آنها تاها به دو معیار ریسک و بازده توجه می‌شود مورد بحث و بررسی قرار می‌گیرد. سپس نحوه

فرموله کردن مدل‌های بهینه ریاضی چند معیاری (برنامه ریزی آرماتی) جهت ایجاد مجموعه‌های اوراق

بهادار کارا و انتخاب بهترین مجموعه با توجه به رجحان‌های سرمایه‌گذار را تشریح می‌نماید. بعد از بحث

پیروی می‌نماید انتخاب مجموعه بهینه اوراق بهادار چند معیاری، رویهای جدید جهت ارزیابی عملکرد آن

پیشنهاد می‌گردد. جهت ارزیابی نهایی، معادله جدیدی تحت عنوان معادله "تغییر کل در مطلوبیت

تصمیم گیرنده" ارائه می‌گردد. در نهایت، فرایند ارزیابی عملکرد مجموعه اوراق بهادار متناسب طی دوره‌ای

معین با مثابه عدید مورد بازنگری قرار می‌گیرد. این مقاله، امکان مدلسازی مسائل جهت انتخاب مجموعه

بهینه از اوراق بهادار سرمایه‌گذاری با هر تعداد هدف و معیارها فراهم نموده و ارزیابی عملکرد آن را نیز

می‌سازد.

۱ - مقدمه

یک فرد یا گروه گاهی باید تا در موقعیت‌های

مخاطره‌آمیز قرار می‌دهد که در آن موقعیت‌ها

می‌تواند است امور مطالب یا پیشرفت‌ها به پیش

نروند. وضعیت‌های مخاطرهآمیز را می‌توان با

* عضو هیئت علمی مرکز مطالعات مدیریت و بهره‌وری ایران، دانشگاه تربیت مدرس

۶۵
آن‌آ یا عملکرد یک گروه از بی‌پروازه‌های پیش‌بینی برتر بوده و یا پست تر؟ و اینکه آن‌آ یا عملکرد حاصله
توقف مهارت‌های به‌طور مداوم مجموعه اوراق بهادار مشابه به‌طور است و یا شانس و اقبال؟ در بخش
بی‌پروازه به‌طور مداوم مشابه انتخاب و ارزیابی
عملکرد اوراق بهادار خواهیم داشت.
بخش سوم به نظر فراوانی انتخاب و ارزیابی
مجموعه‌های اوراق بهادار با در نظر گرفتن
می‌پردازد. مثالی عده‌ای در بخش چهارم مطرح
گردد. و تلاش‌ها و نتایج حاصل در این مقاله نزدیک
انتها آرائه شده است.

2. شیوه‌های کلاسیک انتخاب و ارزیابی
مجموعه بینه‌ای اوراق بهادار
بنابر مدل استاندارد مارکویتز، سرمایه‌گذاری
مجموعه اوراق بهادار سرمایه‌گذاری
نظر یافته‌های بر پایه دو
معیار ریسک و بازده
سیستم‌ها را به‌طور مناسب
تربیت می‌کنند. در این مدل در سه‌تایی حالت، نرخ
بازده یک یا بیشتر به‌طور مشابه مشابه نمود:

\[R_i = P_i - P_i + D_i \quad \text{for} \quad i = 1, 2, ..., N \]

در جایی که \(P_i \) یا \(D_i \) یا \(P_i \) یا انتخاب دهده
ورقه به‌طور چاپ سرمایه‌گذاری می‌باشد، (ER)\(\text{ER} \) می‌باشد.

\[\text{ER} = \alpha \text{ER} \quad \text{باین‌بیانیا} \]

نرخ بازده مجموعه‌ای از اوراق بهادار نزدیک به راحتی
با رابطه بعد محسوب است (\(\beta \)).

درصد سرمایه‌گذاری در ورقه 1 آم می‌باشد.
انتخاب و ارزیابی عملکرد مجموعه‌های اوراق بهادار

g به شرح زیر محاسبه می‌شود:

\[\sigma_p^2 = \sum_{i=1}^{N} x_i^2 q_i^2 + \sum_{j=1}^{N} \sum_{i=1}^{N} x_i x_j q_i q_j \]

Where \(\sigma_i q_j \rho_{ij} = \sigma_{ij} = \text{covariance} \) i and j

مدل مارکوویتز از لحاظ تئوریک مدل مطلوبی است ولی در کاربرد عملی آن مشکلاتی وجود دارد. یکی از این مشکلات از روم محاسبات زیاد جهت کواریانس می‌باشد. این مشکل با کار پرسون شارب (1963) تا حد زیادی رفع گردید.

در مدل مارکوویتز، بالازد به هر ورقه متوسط میانگین بالازد مجموعه اوراق بهادار به

\[\text{ارب}_T = \frac{1}{T} \sum_{t=1}^{T} r_{pt} \]

\[\text{ارب}_T = \frac{1}{T} \sum_{t=1}^{T} \text{ارب}_T \]

با محاسبه بنتای مجموعه اوراق بهادار (\(\varphi_T \)) و ارزیابی کردن عملکرد مجموعه اوراق بهادار مبنای بهره‌بری ارزیابی به شرح زیر می‌باشد:

1. بجره‌گیری از روشهای ساده جهت بررسی ارتباط میان بازده‌های کل بازار و مجموعه اوراق بهادار مبنای، محاسبه

\[\varphi_T = \text{ارب}_T - \text{ارب}_p \]

در جایی که مجموعه اوراق بهادار مبنای (\(\text{ارب}_p \)) مبنای باشد، عملکرد مجموعه اوراق بهادار مبنای مطلوبی تلقی گردیده.
توسط بتا را با توجه به \(R_p \) به شرح زیر تعیین نمود:

\[
\begin{align*}
R_p^* &= \frac{\beta pT (\sigma_m^2)}{\sigma pT} \Rightarrow \sigma pT = \frac{\beta pT (\sigma_m^2)}{R_p^*} \\
&= \frac{\beta pT (\sigma_m^2)}{R_p} \\
&= \frac{\beta pA (\sigma_m^T)}{R_p} \\
&= \frac{\beta pA (\sigma_m^T)}{R_p}
\end{align*}
\]

با توجه به تعیین شده در قسمت‌های قبلی، نوشته‌ای می‌تواند جملاتی باشد. \(\sigma pT = \beta pA (\sigma_m^T) \)

\[
\begin{align*}
\beta m_T &= R_{mn}^T \Rightarrow \sigma m_T = \beta m_T (\sigma_m^T) \\
\beta mA_T &= R_{mn}^T \Rightarrow \sigma mA_T = \beta mA_T (\sigma_m^T)
\end{align*}
\]

در حالی که \(\beta mA_T = 1 \) باشد، مجموعه اوراق بهداشت بهتر از \(\sigma pT = \beta pA (\sigma_m^T) \) است.

\[
\begin{align*}
\text{ارج:} \quad \frac{\alpha_p}{\sigma pT} &= \frac{\text{ارج}}{\text{ارج}} \\
\text{ارج:} \quad \frac{\alpha_p}{\sigma pT} &= \frac{\text{ارج}}{\text{ارج}}
\end{align*}
\]

3. انتخاب و ارزیابی مجموعه بهینه اوراق بهداشت چند معیاری

در غلبه موارد عملی (صرفنظر از جنبه‌های توریستی)، مسئله انتخاب و ارزیابی مجموعه اوراق بهداشت مسالماتی چند معیاری می‌باشد که در آن معیارهای جز ریسک و وابستگی نظر تغییری ندارد و در این راستا مجموعه اوراق بهداشت در راهمان‌داده مجموعه اوراق بهداشت و سهولت اداره مجموعه اوراق بهداشت نیز به‌همین می‌باشد. ادبیات کلاسیک اثر مالیات بر سرمایه‌گذاری‌های افراد و شرکت‌ها را نادیده می‌گیرد. مالیات بر گذارین بخش از هزینه‌های سرمایه‌گذاری را تشکیل می‌دهد (پیش از هزینه‌های مالیت و کمیسیون). جهت تضمین از این که می‌شود، شیوه‌نگار، محاسبه نسبت \(\frac{\text{ارج}}{\text{ارج}} \) است. در جهت‌گیری که ریسک‌های سیستماتیک با انحراف استاندارد خطا‌های محاسبه به‌ایجاد در این حال، مثبت بودن مقدار کسر فاکتور دلال مطلوبی بودن عملکرد مجموعه اوراق بهداشت مناسب می‌باشد.

2. در این روش اقدام به محاسبه \(\frac{\text{ارج}}{\text{ارج}} \) نموده و آن را با شیب خصخص اوراق بهداشت کم‌تری از میانی مقمیه، اگر باشد عملکرد مجموعه RVOL \(pT \) باشد از عملکرد مجموعه اوراق بهداشت بهتر از عملکرد کل بهداشت است.

\[
\text{ارج:} \quad \frac{\alpha_p}{\sigma pT} &= \frac{\text{ارج}}{\text{ارج}}
\]

یکی از روش‌های از بوده و با محاسبه \(\frac{\alpha_p}{\sigma pT} \) و دقیقه آن با شیب خصخص از تأثیر سرمایه، ارزیابی به عمل می‌آید.

\[
\text{ارج:} \quad \frac{\alpha_p}{\sigma pT} = \frac{\text{ارج}}{\text{ارج}}
\]

4. در این روش اقدام به هر گروهی از معامله رگرسیون‌های هنری که ضریب تغییر آماری (\(R^2 \)) بین گز می‌شود و مقدار بهداشت است که با میانگین بهداشت قابل توضیح داده است. هرچه \(R^2 \) کوچک‌تر باشد، قدرت توضیح خصخص رگرسیون کمتر و ریسک غیر سیستماتیک مجموعه اوراق بهداشت بیشتر است. با استناد به رابطه محاسبه ریسک کل و تعیین نرخ بهداشت به ازای هر واحد آن، با ردیس سیستماتیک بیان شده
انتخاب و ارزیابی عملکرد مجموعه‌های اوراق بهادار

فیلیتوس 1978)، این تئوری‌ها ایجاد می‌کنند که در ادوات سنتی به روشی تشخیص نشان داده شده‌اند. علاوه بر آن و از همه مهم‌تر این که، مدل اقتصادی این آنکه می‌تواند بتواند از مزایا و مزایایی که یافته‌های آماری در ارائه ارائه کننده ارائه کننده است. به همین دلیل، این‌گونه است. جهت ارزیابی گروه میزان مقدارینی است که جهت ارزیابی ارائه باعث می‌شود تا توجه به رجحان‌های باعث عملی آورده و طرح‌های مدل که هر دو کار مزایایی ارائه می‌کند. به همین سو که جهت انتخاب بهترین مجموعه ارائه گزارش را به طور همزمان انجام دهد، بسیار ضروری است. از آن‌گونه که مدل‌های صورتی ارائه شده نشان می‌دهند، از آنجا که مدل‌های ارائه به‌طور شامل اهدافی متضاد و متمادی هستند (نظیر خدا گزارش‌های بیشتر و معینه کردن کاندیدات)، برنا ملی آرمانی مناسب‌ترین تکنیک برای آنها به‌شمار می‌رود. مناسب‌ترین برنا ملی آرمانی به‌عنوان جهت انتخاب مجموعه ارائه به‌طور همزمان کارا را می‌تواند در مطالعات (لی 1973) و (لی - چستر 1980) یافت. این مطالعات قدرت برنا ملی آرمانی را در ایجاد مجموعه ارائه به‌طور همزمان کارا و همچنین انتخاب بهترین مجموعه ارائه به‌طور یافته که به‌طور تشریح نماید.

مقدار که تفاوت را می‌توان با تابع هدف $Z(X)=Z(x_1,...,x_n)$ به‌طور $Z(x_1,...,x_n)$ بپذیرد، به‌طور $Z(x_1,...,x_n)$ در این‌گونه — چنین می‌تواند با انتخاب $Z(X)=Z_1(X),Z_2(X),...,Z_k(X)$ به‌طور تشریح

در جایی که مقادیر ثابت و مثلثی هستند که وزنه‌های نسبی مربوط به متغیرهای انحرافی مثبت و منفی را نشان می‌دهد، و وزنه‌های نسبی اختصاص یافته به هر یک از $i=1,2,...,n_i$ دسته مختلف موجود در آمیان طبقه است، طبقه‌ای که ارزش p_i به آن اختصاص می‌یابد، p_i فاکتور اولیه مطلق می‌باشد.

X مجموعه جواب‌های بهینه با توجه به محدودیت‌های سیستم، تابع خطي از X سطح آرامانی، متغیرهای انحرافی منفی و مثبت.

در نهایت، تفاوت در عملکرد میان گرینگهای (x_i, y_i) در ارتباط با هدف یا می‌تواند تصمیم‌گیری توان با $x_i = f_i (X) - f_i (Y)$ این تابع عملکرد را می‌توان با تابع ارزشی $F (d_i)$ حاصله از رجحان‌های تصمیم گیرنده تعیین نمود.

روش تحلیل و مؤثر و هدایت گرینگهای پیشنهادی تعیین آسانتر و موثرتری از رجحان‌های تصمیم گیرنده و ملحوظ نمونه آنها در تابع هدف ارائه نموده است.

در انتخاب و ارزیابی مجموعه اوراق بهادار، سرمایه‌گذاری توجه به چند مورد حائز اهمیت است.

(1) $\text{Min } Z = \sum_{i=1}^{K} (W_i^+ d_i^+ + W_i^- d_i^-)$

(2) $\text{Min } Z = \sum_{i=1}^{k} \sum_{i=1}^{n_i} (W_{ii}^+ d_i^+ + W_{ii}^- d_i^-)$

(3) $\text{Min } Z = \sum_{i=1}^{K} p_i (d_i^+ + d_i^-)$

(4) $\text{Max } Z = \sum_{i=1}^{K} (F_i^+ d_i^+ + F_i^- d_i^-)$

$\text{St. } f_i (X) \leq d_i^+ + d_i^- = g_i$ $X \in C_s$

1- انواری، رستمی و تاباها (1998)

2- انواری، رستمی و تاباها (1998)
طرح مدل چند میانگی جهت انتخاب مجموعه بیشینه اوراق بهادار صورت گرفته.

امروزیان عامل‌کننده مجموعه‌های اوراق بهادار...

برای هر هدف سطح آرمانی را تعیین نمایید.

با توجه به متغیرهای تصمیم و متغیرهای انحرافی مثبت و منفی و سطوح آرمانی وضع شده توسط سرمایه‌گذاری برای اهداف مختلف، معادلات ریاضی مدل برنامه‌ریزی آرمانی را تهیه نمایید.

با روشنی تعمیلی و رو در رو تابع رجحانهای سرمایه‌گذاری را تعریف و در تابع هدف مدل بگنجانید.

مدل را حل نمایید و با توجه به مقادیر حاصله برای متغیرهای تصمیم، مجموعه‌ای از اوراق بهادار بهینه را بیاورد.

از ارزیابی مجموعه بیشینه اوراق بهادار سرمایه‌گذاری چند میانگی

تعیین با معنی‌برداری که هر یک از اجزای آن بیانگر مقدار واقعی دست پایه طی دوره بررسی از هر سطح آرمانی وضع شده است. این بردار را در پایان دوره بر اساس می‌توان با چاگندها واقعی حاصل از متغیرهای تصمیم مدل، داشتن سطوح آرمانی اهداف مختلف و ضرایب فنی مدل بدهد است. روش‌های کلاسیک ارزیابی عامل‌کننده حالتی خاص از مدل‌های چند میانگی به‌شمار می‌آید که در آن دو هدف جداگانهی پایه و حداکثری ریسک مجموعه اوراق بهادار مذکور می‌باشد. اگر نتایج از عامل‌کننده اوراق بهادار باز در خصوص هر میانگی، داده مناسبی به‌دست آورد، بردار مقایسه به‌رافینی (مدل سنتی کورورینانس مارکوویتز، مدل شارب و...)؟

آیا از ارزیابی‌های غیر سنتی متفاوت و متعددی را در انتخاب دخالت داد (مدل‌های چند میانگی)؟

فرایند مناسب ارزیابی عامل‌کننده مجموعه‌ای اوراق بهادار کدام است؟

چهار نوع فرایند ارزیابی که به‌نام دچتر شد (جهت مدل‌های سنتی انتخاب مجموعه اوراق بهادار)؟

فرایند ارزیابی جدید (جهت مجموعه‌های اوراقی که بر مبنای چندین میانگی گردیده می‌شوند)؟

در حالی که در نمودن مدل‌های بر مبنای چندین میانگی، آیا داده‌های کافی برای اندازه‌گیری و ارزیابی در بازار وجود دارد؟ و گر خیر چگونه می‌توان داده‌های مربوط به مجموعه‌ای اوراق بهادار شاخص و میانگی مقایسه‌ها به‌وجود آورد؟

موضوع بحث این مقاله، طرح مدل‌های چند میانگی بر مبنای برنامه‌ریزی آرمانی مناسب (نه دو میانگی سنتی) جهت انتخاب و ارزیابی است و فرایند جدیدی را جهت ارزیابی مجموعه‌های اوراق بهادار متمتک بر طبق این مدل‌ها ارزش خواهی نمود. ابتدا طرح مدل انتخاب و سپس فرایند ارزیابی مجموعه اوراق بهادار مورد بحث قرار خواهد گرفته.
تکمیل می‌شود. اگر توان از عملکرد مجموعه اوراق بهادار بردار دوره از مهم‌ترین آن جزء (اجزاء) از بردار می‌توان با مقدار آرمانی تعیین شده برای هر هدف در مدل انتخاب مجموعه اوراق بهادار که در ابتدا در آن بهره گرفته شد جایگزین نموده و عملیات ارزیابی انجام گرفته است، در این مدل به هدف حداقلی از هزینه مالی بردار داده‌هاي یکپارچه باشد.

اگر مدل انتخاب مجموعه اوراق بهادار برناه رزی آرمایی از نوع سوم بوده باشد (مدل لکژیکو گرافیکی با اولویتی)، عملکرد مجموعه اوراق بهادار مالی بردار و برتر است اگر میزان دسترسی به هدف اولین هدف بیشتر باشد. این بحث از نظر سرمایه‌گذار جزئی ناجیزی از هدف اولویتی تراها به هدف اهداف کم اولویتی نمی‌توان جبران نمود.

اگر مدل از نوع دوم باشد (وزنی و اولویتی)، عملکرد مجموعه اوراق بهادار مالی بردار و برتر است اگر میزان دسترسی به هدف کل اهداف موجود در اولین سطح اولویتی بیشتر باشد. با جایگزین مقداری از بردار مالی به‌صورت به‌های سطح اولولویتی و مقداری مقدار به‌صورت آن هدف بردار اصلی از مجموعه اوراق بهادار مالی بردار و بازار مالی بردار توان اگر مقدار باشد در جایگزینی:

\[TCDMU = \frac{1}{k} \sum_{i=1}^{k} \left[W_i \left(\frac{AV_{MG} - BV_{MG}}{BV_{MG}} \right) - W_i^* \left(\frac{AV_{MG} - BV_{MIG}}{BV_{MIG}} \right) \right] \]

در جایگزینی

من‌ک مقدار یا سطح واقعی دستیابی به

72
مقدار عددی معادله مذکور برای مجموعه اوراق بهادار منتخب به ارتفاع آپرده است (هدفه که در پی حداکثر نمودن آن بوده‌ایم).

مقدار یا سطح واقعی دستیابی به هدفه است که مجموعه اوراق بهادار منتخب به ارتفاع آپرده است (هدفه که در پی حداکثر نمودن آن بوده‌ایم).

مقدار یا سطح واقعی دستیابی به هدفه است که مجموعه اوراق بهادار شاخص یا مبنا متقاپسه به ارتفاع آپرده است (هدفه که در پی حداکثر نمودن آن بوده‌ایم).

جدول شماره 1

<table>
<thead>
<tr>
<th>Titles</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Market</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_j</td>
<td>0.112</td>
<td>0.16</td>
<td>0.328</td>
<td>0.04</td>
<td>0.16</td>
<td>0.2</td>
<td>0.024</td>
<td>0.024</td>
<td>0.232</td>
<td>0.088</td>
<td>0.08</td>
</tr>
<tr>
<td>β_j</td>
<td>1.4</td>
<td>2</td>
<td>4.1</td>
<td>0.5</td>
<td>2</td>
<td>2.5</td>
<td>0.3</td>
<td>0.3</td>
<td>2.9</td>
<td>1.1</td>
<td>1</td>
</tr>
<tr>
<td>D_j</td>
<td>0.2</td>
<td>0.17</td>
<td>0.4</td>
<td>0.35</td>
<td>0.15</td>
<td>0.25</td>
<td>0.3</td>
<td>0.45</td>
<td>0.12</td>
<td>0.22</td>
<td>*</td>
</tr>
<tr>
<td>$\left(\frac{P}{E}\right)_j$</td>
<td>10</td>
<td>15</td>
<td>8</td>
<td>6</td>
<td>12</td>
<td>25</td>
<td>30</td>
<td>14</td>
<td>17</td>
<td>5</td>
<td>*</td>
</tr>
</tbody>
</table>
با فرض سطوح آرمانی به شرح زیر (15.11, 0.112, 0.0434, 12.11) سطح نوع مجموعه اوراق بهاداری بیشتر (هر یک با توجه به رجحانها و شکل متقاوت تابع هدف) به شرح زیر را می‌توان با نهاد که حل آنها عبارت است:

$$X_1 = 0.315789, \quad X_2 = 0.684211$$

$$X_3 = 0.232558, \quad X_7 = 0.372093, \quad X_{10} = 0.395349$$

ارزش گذاری دارایی‌های سرمایه‌ای شارب بهره‌گرفته شده است. در این مقاله مدل دوم یا می‌تواند کاری گرفته است (پایه‌می‌گردد پا ریسک سیستم‌یابی یا با است).

جدول ۱ داده‌های فرضی مربوط به ۱۰ سهم بازار را نشان می‌دهد. در این جدول، $$D_i, R_i, \beta_i$$ و $$P_i$$ به ترتیب عبارتند از باند بر مبنای باند بزرگ، نرخ تقسیم سود و نسبت قیمت به درآمد سهم $$(10, 12, \ldots)$$ با پره‌گیری از داده‌های جدول و با توجه به نوع رجحانها و شکل‌های بخش هدف حاصل، مدل‌های پردازش آرمانی مناسب‌تر برای انتخاب مجموعه اوراق بهاداری می‌تواند باشد.

شکلات مختلف تابع هدف به شرح جدول ۲ می‌باشد.

جدول شماره ۲

<table>
<thead>
<tr>
<th>شماره</th>
<th>معادله</th>
<th>شرح</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>$$\min Z = \sum_{i=1}^{k} \left(W_i^t d_i^t + W_i^t d_i^t \right) \Rightarrow P_1 d_1^t + P_2 d_2^t + P_3 d_3^t + P_4 d_4^t$$</td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>$$\min Z = \sum_{i=1}^{k} \sum_{l=1}^{n_k} \left(W_i^l d_i^l + W_i^l d_i^l \right) \Rightarrow P_1 (d_1^l + d_2^l) + P_2 d_3^l + P_3 d_4^l$$</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>$$\min Z = \sum_{i=1}^{k} P_i \left(d_i^t + d_i^t \right) \Rightarrow 0.5d_1^t + 0.3d_2^t + 0.15d_3^t + 0.05d_4^t$$</td>
<td></td>
</tr>
</tbody>
</table>

$$S.t. \quad f_i(X) - d_i^t + d_i = g_i$$

$$X \in C_s \Rightarrow \sum_{i=1}^{10} x_i$$
بردار مقایسه مجموعه اوراق بهاداری اول:

\[G_{p1}^{-1} = \left(\begin{array}{c} R_{p1} \beta_{p1} D_{p1} \left(\frac{P}{E} \right)_{p1} \\
\end{array} \right) = (0.14, 16, 0.35, 6) \]

بردار مقایسه مجموعه اوراق بهاداری دوم:

\[G_{p2}^{-1} = \left(\begin{array}{c} R_{p2} \beta_{p2} D_{p2} \left(\frac{P}{E} \right)_{p2} \\
\end{array} \right) = (0.13, 13, 0.04, 8) \]

بردار مقایسه مجموعه اوراق بهاداری سوم:

\[G_{p3}^{-1} = \left(\begin{array}{c} R_{p3} \beta_{p3} D_{p3} \left(\frac{P}{E} \right)_{p3} \\
\end{array} \right) = (0.18, 25, 0.02, 15) \]

بردار مقایسه مجموعه اوراق بهاداری پنجم:

\[G_{m}^{-1} = \left(\begin{array}{c} R_{m} \beta_{m} D_{m} \left(\frac{P}{E} \right)_{m} \\
\end{array} \right) = (0.09, 1, 0.15, 10) \]

در نهایت می‌توان با چاگرداری بردارها در معادله TCDMU تحلیل نهایی را انجام داد:

\[TCDMU = \sum_{i=1}^{k} \left[w_i \left(\frac{AV_{MG} - BV_{MG}}{BV_{MG}} \right) \right] \]

\[TCDMU_{p1} = 0.5 \left(\frac{0.18 - 0.09}{0.09} \right) + 0.5 \left(\frac{1.2 - 2.5}{1} \right) + 0.15 \left(\frac{0.2 - 0.15}{0.15} \right) + 0.05 \left(\frac{15 - 10}{10} \right) = 0.125 \]

\[TCDMU_{p2} = 0.5 \left(\frac{0.18 - 0.09}{0.09} \right) + 0.3 \left(\frac{1.2 - 2.5}{1} \right) + 0.15 \left(\frac{0.2 - 0.292}{0.292} \right) + 0.05 \left(\frac{15 - 15}{15} \right) = 0.0027 \]

\[TCDMU_{p2} = 0.5 \left(\frac{0.112 - 0.09}{0.09} \right) + 0.3 \left(\frac{1.2 - 2.5}{1} \right) + 0.15 \left(\frac{0.2 - 0.292}{0.292} \right) + 0.05 \left(\frac{15 - 15}{15} \right) = -0.4973 \]
References

